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Spin-Exchange Collisions

F = 1 (Sodium) example:

mF = 0

mF = 0

Spin-exchange 
interaction with 

wavefunction 
overlap

mF = -1

mF = +1

Entangled

Applications: Spin-squeezed magnetometry, quantum 
interferometry, polarons, and many more!



The Bose-Einstein Condensate

Room temperature: 
billiard ball model

Low temperature:
“wavepackets”

Ultracold: 
Bose-Einstein 
Condensate forms

100 nanoKelvin: 
coherent matter 
wave

Spin-mixing 
collisions are 
incoherent, 
uncontrollable, 
and random

Spin-mixing 
collisions are 
coherent, tunable, 
and in lock-step
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Abstract

Progress and Outlook
• We built the compensation coils and optical dipole trap system.

• We setup the imaging system which can be used for fluorescent 

imaging and absorption imaging.

• We optimized the magneto-optical trap and observed a maximum 

number to date of 600 million atoms, measured by absorption 

imaging.

• This summer we will implement evaporation cooling to reach BEC.

• In fall we will plant to implement interferometry with F=1 BECs.

Improved Experimental Apparatus
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Rydberg Excitation

MOT

Effect of Rydberg Impurities on

Spinor Dynamics (Phase II)

• What is the effect of Rydberg impurities on spin population 

oscillations (amplitude, frequency, increased decoherence rate)?

• Rydberg excitation with 408 nm diode laser

• Rydberg excitation blockade radius is close to size of BEC (~5 µm)

• Rydberg detection via pulsed-field ionization time-of-flight 

spectrometer and micro-channel plate detector (MCP)

• Recessed non-magnetic viewports to increase imaging resolution

• Distinguish Rydberg states (n~40) with ramped-field ionization                                    

• Long time-of-flight tube to determine shape of cold Rydberg cloud

• Long term: optical lattice beams to create multiple sodium BECs

next to each other and excite Rydberg atoms in them

Dipole Trap

Imaging

MCP Detector

Flight Tube

MOT Coils

Fig. 11: Phase II of experimental chamber design 

We present and characterize our recently improved experimental

apparatus for studying matter-wave quantum optics in spin space in

ultracold sodium gases. Improvements include our recent addition of a

3D-printed Helmholtz coil frame for field stabilization and a crossed

optical dipole trap. Spin-exchange collisions in the F= 1 spinor Bose-

Einstein condensate can be precisely controlled by microwave

dressing, and generate pairs of entangled atoms with magnetic

quantum numbers mF= +1 and mF= -1 from pairs of mF= 0 atoms.

Spin squeezing generated by the collisions can reduce the noise of

population measurements below the shot noise limit. Versatile

microwave pulse sequences will be used to implement an

interferometer, a phase sensitive amplifier and other devices with sub-

shot noise performance. With an added ion detector to detect Rydberg

atoms via pulse-field ionization, we later plan to study the effect of

Rydberg excitations on the spin evolution of the ultracold gas.

Motivation

Spin-mixing Interferometry

• Spin-exchange collisions create entanglement

• Interferometry below shot-noise limit

• This allows us to measure quantum enhanced with large numbers 

in the arms of the interferometer and long evolution times

• See talk P5.00002 for our numerical results

Spinor Hamiltonian

• Spin Hamiltonian under the 

single-mode approximation 

(SMA)

•

•

• h×30 Hz (typical 

Na BEC)

• Spin-independent terms are 

neglected

• Linear Zeeman effect is 

omitted

• Sodium (Na) is interesting compared to rubidium (Rb)

• Antiferromagnetic (c > 0): different spin dynamics from Rb

• Large spin-dependent interaction strength (five times larger than Rb)

• Dynamics can be coherently controlled via applied microwaves and 

RF fields at moderate frequencies (1.8 GHz compared to 6.8 GHz 

for Rb)

Why Sodium

B-field Compensation Coils
• 3D-printed Helmholtz coils

• Home-built current control system

• I = -5 A to 5 A

• PI control for high-speed switching 

• Fast switching, but ring down takes ~1.5 ms

F=1 spinor BECs are interesting because of

• Spin textures and spin waves in elongated BECs

• Spin dynamics in optical lattices

• Spin squeezing, non-Gaussian states, and massive 

entanglement

• Precise control with microwaves

• Matter wave quantum optics in spin space

• Quantum interferometry with spin-mixing

Optical Dipole Trap  

Fig. 10: Photon of optical dipole trap laser setup

Fig. 1: (a) Spin-exchange collision and (b) interferometry with initial seeds

Fig. 5: 3D-printed Helmholtz coils 

Fig. 3: CAD rendering of vacuum system

Fig 2: Spin-exchange collisions in F=1 

spinor BECs are similar to four wave 

mixing. 

a) b)

Fig. 6: MOT centered with Helmholtz coils

Fig. 8: Time of flight expansion measurement 

of optical molasses. The temperature from the 

fit is 65.5(1) " K 

Fig. 7: False color image of optical molasses 

with superimposed Gaussian fit

Dark Spot MOT
• N	≈ 3 × 108 in optical molasses phase

• MOT life time is on the order of 10 s

• Large MOT beam diameter (0.7 in)

• Repumping: 4 beam crossed dark spot 

projected on MOT

Side and Top Imaging
• Absorption and fluorescent imaging

• Magnification, mside ≈ 0.6, mtop ≈ 2

• %/4-plate in telescope to reduce fringes

• Reduced camera vibration to minimize 

fringes

• Microscope objective for BEC (m = 8.83) 
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Fig. 4: Photo of vacuum system
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• IPG fiber laser at %=1064 nm, P = 0 - 50 W, 

w0 = 3 mm

• Laser is controlled and stabilized via AOM 

and  commercial PI controller

• Crossed beam, 1/e2 waist at focus is 50 )m

• Dichroic mirrors are used to overlap dipole 

trap beams with MOT beams

Fig. 9 : Schematic of optical dipole trap setup
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Zeeman Slower

v

Photon 
absorption 
decreases 
atomic velocity 
by ℏk/m 

Na

Magnetic field compensates for 
decreasing Doppler shift

Red-detuned laser 
light propagation 

Sodium atom with 
initial velocity

Spontaneous emission in 
all directions (cancels)



The Magneto-Optical Trap (MOT)

The energy of the magnetic sublevels  
with position along any given laser axis 
(Schwettmann 2012).

Anti-Helmholtz 
Coils

Red-detuned 
lasers

σ+ σ-

σ+ σ-

σ+

σ-



The Magneto-Optical Trap

σ+ σ-

σ+

σ+

σ-

Sodium MOT, radius 5 mm



Next Steps:

• Test sodium oven

• Optimize Zeeman Slower

• Test Anti-Helmholtz coils

• Current

• New water cooling

• Computer control

• Check polarization and 

alignment for MOT

• Diagnostic measurements 

(next slide)
Experimental apparatus



Diagnostic Measurements
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Effect of Rydberg Impurities on

Spinor Dynamics (Phase II)

• What is the effect of Rydberg impurities on spin population 

oscillations (amplitude, frequency, increased decoherence rate)?

• Rydberg excitation with 408 nm diode laser

• Rydberg excitation blockade radius is close to size of BEC (~5 µm)

• Rydberg detection via pulsed-field ionization time-of-flight 

spectrometer and micro-channel plate detector (MCP)

• Recessed non-magnetic viewports to increase imaging resolution

• Distinguish Rydberg states (n~40) with ramped-field ionization                                    

• Long time-of-flight tube to determine shape of cold Rydberg cloud

• Long term: optical lattice beams to create multiple sodium BECs

next to each other and excite Rydberg atoms in them
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Fig 2: Spin-exchange collisions in F=1 

spinor BECs are similar to four wave 
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Fig. 6: MOT centered with Helmholtz coils

Fig. 8: Time of flight expansion measurement 

of optical molasses. The temperature from the 

fit is 65.5(1) " K 

Fig. 7: False color image of optical molasses 

with superimposed Gaussian fit

Dark Spot MOT
• N	≈ 3 × 108 in optical molasses phase

• MOT life time is on the order of 10 s

• Large MOT beam diameter (0.7 in)

• Repumping: 4 beam crossed dark spot 

projected on MOT

Side and Top Imaging
• Absorption and fluorescent imaging

• Magnification, mside ≈ 0.6, mtop ≈ 2

• %/4-plate in telescope to reduce fringes

• Reduced camera vibration to minimize 

fringes

• Microscope objective for BEC (m = 8.83) 
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• IPG fiber laser at %=1064 nm, P = 0 - 50 W, 

w0 = 3 mm

• Laser is controlled and stabilized via AOM 

and  commercial PI controller

• Crossed beam, 1/e2 waist at focus is 50 )m

• Dichroic mirrors are used to overlap dipole 

trap beams with MOT beams

Fig. 9 : Schematic of optical dipole trap setup
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